The discretized Schr ̈ odinger equation for the finite square well and its relationship to solid-state physics
نویسندگان
چکیده
The discretized Schrödinger equation is most often used to solve onedimensional quantum mechanics problems numerically. While it has been recognized for some time that this equation is equivalent to a simple tightbinding model and that the discretization imposes an underlying bandstructure unlike free-space quantum mechanics on the problem, the physical implications of this equivalence largely have been unappreciated and the pedagogical advantages accruing from presenting the problem as one of solid-state physics (and not numerics) remain generally unexplored. This is especially true for the analytically solvable discretized finite square well presented here. There are profound differences in the physics of this model and its continuous-space counterpart which are direct consequences of the imposed bandstructure. For example, in the discrete model the number of bound states plus transmission resonances equals the number of atoms in the quantum well.
منابع مشابه
The discretized Schroedinger equation for the finite square well and its relationship to solid-state physics
The discretized Schrödinger equation is most often used to solve onedimensional quantum mechanics problems numerically. While it has been recognized for some time that this equation is equivalent to a simple tightbinding model and that the discretization imposes an underlying bandstructure unlike free-space quantum mechanics on the problem, the physical implications of this equivalence largely ...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملA New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation
In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...
متن کاملINVERSE SCHR ODINGER SCATTERING ON THE LINEWITH PARTIAL KNOWLEDGE OF THE POTENTIALTuncay
The one-dimensional Schrr odinger equation is considered when the potential and its rst moment are absolutely integrable. The potential is uniquely constructed in terms of the scattering data consisting of the reeection coeecient from the right (left) and the knowledge of the potential on the right (left) half line of the real axis. Hence, neither the bound state energies nor the bound state no...
متن کاملA Modulation Method for Self-focusing in the Perturbed Critical Nonlinear Schr Odinger Equation
In this Letter we introduce a systematic perturbation method for analyzing the e ect of small perturbations on critical self focusing by reducing the perturbed critical nonlinear Schrodinger equation (PNLS) to a simpler system of modulation equations that do not depend on the transverse variables. The modulation equations can be further simpli ed, depending on whether PNLS is power conserving ...
متن کامل